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Cable Dynamics for Tethered Underwater Vehicles

1 Abstract
The dynamics of tethered underwater vehicles are affected significantly by the presence of the tether,
particularly in deep water when the mass and drag of the cable are comparable, or even much larger than

the drag and inertia of the vehicle fself.

A numerical scheme is provided herein to study the dynamics of tethered vehicles, which exploits a
variety of previous findings in cable dynamics to simpiify the governing equations without affecting
noticeably the accuracy of the solution. Woods Hole Oceanographic Institlution’s vehicles, such as ARGQ
and JASON, are used as example cases and full scale results confirm the validity of the numerical

predictions.

2 Introduction

Tethered underwater vehicles find a wide range of applications. Some are positioned through
controlling the surface support ship, because they make a very reliable and economic means for
continuous ocean exploration. Others carry their own thrusters, but use the umbilical cable for power and

communication transmission.

In ail cases, however, the tether introduces significant dynamic phenomena, because it carries
substantial inertial and fluid drag loads. Hence, in order 1o properly understand and possibly improve the

dynamics of the underwater vehicle, one must have an accurate model of the cable at hand.

A cable presents unusual difficulties as a dynamical system, because it is a mechanism, rather than a
simple structural member, i.e. it accomodates external loads through substantial shape changes. As a
result, the cable configuration is an unknown itself, rendering & simulation by necessity nonlinear and
guite complex. Also, when a cable moves in water it is subject to large fluid forces, the principal of which
is separation drag, a force which is notoriously difficult to model because it is accompanied by vortex
formation and an assortment of complex fluid phenomena, while its functional dependence, even within
the simple Morison formulation, is nonlinear, thus adding to the complexity of the problem. In fact, one

may state safely that knowledge of cable dynamics In air is entirely useless when studying




problems in water, because of the dramatic changes caused by nonlinear drag.

Cable dynamics have attracted considerabie attention for a variety of applications, while the theoretical
interest is also considerable (see Irvine 1981, Triantafyllou 1983 and Triantafyllou 1987a). Several
authors have addressed problems similar to the one at hand, i.e. the behaviour of a cable used 1o tow a
body. in the references we have provided a number of citations for work on the field, including recent

contributions.

A substantial effort has been expended over the last ten years in the Design Laboratory at M.LT.
studying the dynamics of cables. As a result, we are in the position to develop models which are
computationally efficient, while they contain all essential physical mechanisms of cable response. The
present report outlines in some detail the application of such models and the associated numerical codes

to surface-controlied vehicles. Full scale data are used to corroborate the findings.

3 Previous Work

4 Analytical Model Derivation

The cable and vehicle madels described here have their origin in Triantafyllou (1986, 1987b) and Hover
(1989). In the cable model the unwieldy finite-difference equations are avoided in favour of a Galerkin
spectral method employing a finite Fourier series, resulting in far fewer computational elements. The
vehicle motions present a fairly standard problem in rigid-body dynamics, and they provide the boundary
conditions for the iower end of the cable: the upper end motions are taken to be exactly those of the ship
(the motions of the ship are assumed to be unaffected by the cable and vehicle dynamics). One major
simplifying feature of the model is that it solves the dynamics around a predefined static configuration,

created by a current profile and/or steady tow speed condition.

5 Equations of Motion and Statics
Newton’s Law applied to a differential element of the cable provides the equations of motion for the
cable. We first note that if the unstretched length of an element is ds, then the stretched length dp is

related to ds by the following eguation:

%p=l+e )




where £ is the strain in the element. Letting m be the mass per unit stretched length, v the absolute
velocity vector of the element, R the applied force per unit stretched length, and F the internal force,

Newton's Law gives (see Figure 1):

d
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Figure t: Free Body Diagram for Cable Element

Employing mass conservation, we are left with the following equation:

av  4F

md‘=-£+R €})]

Several simplifications can be made at this stage. First, the bending rigidity is assumed 1o be
negligible; for a cable under high tension (relative to the total magnitude of the distributed l0ads, such as
drag and weight forces), the moments associated with the curvature alone are much higher than the
internal moments due to bending stresses. The effects of torsional moments can be neglected also, since
the eigenvalue problem for torsional dynamics shows the first modes to be exceptionally fast relative to
both the maneuvering and wave-induced frequencies. Also the tension in the cable is assumed to be
quasi-static; i.e., there are no elastic travelling waves. Again, the reason is that the eigenvalue problem

for the elastic response gives very high frequency modes.

We choose to solve the problem in cable coordinates, and select the cable frame to coincide with the

material tangential, normal, and binormal vectors. The rotation vector @ is used to account for time




variance of the reference frame, while the Darboux vector Q is used to account for the spatial changes in

the reference tframe. For an arbitrary vector 1 in the cable frame, total derivatives can be expressed as:

d—'-§+ xf 4
dr ot © )
a of

d_S_§}+th (5)

Three Euler Angles are normally used to transform quantities between inerial and cable reterence

frames - it is convenient to express both the rotation and Darboux vectors in terms of these angles.

In general, R consists of gravity and drag forces, while F is simply {T't}, where t is the tangent vector,

and T is the tension scalar. Accounting for stretching in the static configuration, we find:

STy e ©)
dp
or
oT dt
0 - g t+ TEE-'- H (7)

Only the in-plane motions will be considered here, which are taken to be uncoupled from the out-of-

plane motions. In this special case, ﬂp is the spatial rate of change of the cable’s inclination angle ¢, and

Frenet's relations from Hildebrand (1976) show that this dersivative is in the normal direction. We
eventually arrive at the following two equations which completely describe the static configuration in the

tangential and normal directions:

_ dar 1
0 = wsin(¢) — E‘- ip Cfd Ucos (d) | Ucos{$)| (8)
do 1 . ,
0 = weos(®) - Tz - 5p C,d Usin(@) | Usin )] Y

where w is the cable weight in water per stretched unit iength, d is the cable diameter, C, is the drag
coetficient, C}r is the frictional coefficient, and the velocity U is provided by an arbitrary horizontal current
tield. Elongation of the cable is due to tension (Hooke's Law) and to hydrostatic pressure; both of these

guantities typically change with depth. See the description of the hydrostatic pressure effect in Appendix




1. Cable diameter 4 is reduced from these elongations, through Poisson's Ratio. Finally, we should note

that when the cable is nearly vertical, the tangential drag is negligible.

The initial conditions, in terms ¢f the values of ¢ and T at the bottom of the cable, are found by setting
the aggregate forces and moments on the vehicle equal to zero--this also provides the static inclination

angle of the vehicle. In the sequel, the static cable angle is termed o,.




6 Compatibility Relations
The dynamics as well as the statics are derived from (3) . The strategy will be to solve for the
dynamics as deflections from the static configuration, which ¢an be found betorehand. For this, we need

to identify the geometric compatibility relations.

Compatibility can be expressed in terms of positions or velocities. The velocity-based results have the
advantage that they are independent of the reference syste;m, but in this work we have used the position-
based relations. To begin, let the ‘0" subscript denote quantities in the static sense; deflections from
these static configurations will be studied. In Figure 2, if r, is the static position vector, and r is the

dynamic position vector, then the detlection ¢ is defined as:

r=r-r, (10)

World
Frame

Figure 2: Geometric Compatibility

Letting €2, be the Darboux vector expressed in the static catle coordinate frame, we find that
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Combining terms into {(11), we get

a(r—r

P o + Qo X (T =Ty (1 +5g) (14)

(T+et ~ (1+exity =

For reierence, the velocity relations are easily found by differentiating this relation with respect to time.
For the two-dimensional, position-based analysis, r is projected onto the static cable reference system

<t,,Ny>. Letting p be the axial deflection and ¢ be the lateral deflection. I is written as
F=%p + Nyg (15)

and the dynamic tangent vector is expressed in terms of the angular deflection (¢, in the static cable

reference frame:

t = 1,C05(4) +Ngsin(e) {16)

For the two-dimensional ¢case,

Q= —b, an

(18)
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o (1 +€g) = §+p¥

(19)

Each of these results is now incorporated in the equations of motion that were outlined above. First,
{(18) integrated over the length of the cable yields the dynamic elongation of 1he cable, taking into account

the effacts of static curvature. Namely,

L dd,

AL = —DPn— ——qgds 20
Pr =Py o 3 q (20)
Along with the constitutive law, this gives the dynamic tension in the cable due to elongation and
fransverse deflections. It follows trom the static equation (8), subject to our simplification of the axial

dynamics, that

EA L 04,
Ty=Flog-po- | —aqdsl-F 2
a= PP~ ) A%~ Far (21)
where F , is the dynamic external force in the tangential direction, which acts in addition to the force

found tor the static contfiguration.

Conceming the sacond compatibility relation (19), it is assumed that the dynamic angle due to axial
motion of the cable is small with respect to the angle induced by dynamic lateral motions. This is
motivated by, and substantiated through consideration of the physical system: the venrical motions are
small compared to the length. Coupling the dynamic and static terms in Newton's form, we have, after

some algebra,
a°g o
me—s = (T 4+T)=t+T;—+F @2)
3% ( d) D 4 ap dn

Here, the pure static component from the coupling multiplication fails out, having been solved in the
static case. Physically, the second term on the right side represents the cable’s ability to straighten under

a dynamic tension. Again, £, is the external force in the normal direction.




7 Solving the Modified Wave Equation

a0
The problem is greatly facilitated by non-dimensionalization. First, let a = f , and let T, be some

representative tension in the cable{e.g., at the midpoint). The following definitions are made:

mn=E\'Tr,‘m
T=Iﬁ)ﬂ

5
*EL
n=12
e=2 23

o 4
& =7

T

X
HJ:F

r

Td
Hd:?r

Noting a slight change in derivative notation, i.e. we denote the derivative of a dependent variable u

with respect to a variable z by u,, we begin with the dimensional form of the wave equation (22):
ma, = (Td +Ts) Gt Td - Fdn 24

and using the new non-dimengional variables, obtain

T (Hy+H) T.Ho L Fin 25)
= + -
e mi?w? N mdw? md o>

F ,, will be defined as the external normal force per unit length in the negative-q direction:
1
Fin = 5 Pu C,dIV,|V, | (26)

where V, is composed of the combination of absolute incident flow, and the imposed flow due to the
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cable's own motion. About the equilibrium point, this normal force is

1
Fan = 5C4dp, Ua,~Ul (g~ - |-UK-U)) @7

with U = U/ sin(¢9.). Non-dimensionalization and substitution into (25) gives:

T(H,+H) TH,o
d § i a%e —lDZ (28)
mdmnzL 2

Ny = ———
d mL? (x),.,2

The simplified terms D and Z are given as follows:

p a?
D = —
n (29)
U U y?
Z-= -= -= =
Ciln, o, d! m, o, + p mnz) 30)
Making further use of the nondimensional terms, (28) becomes:
(H, + H Hya L
MNee = = My + —y —iDZ (an

The solution to this partial differential equation is expanded using the Fourier theorem into an infinite

sum of sinusoids plus additional terms to accomodate the boundary conditions, i. e.,

nEH = N -x)+Mx+ Y. O, sin(nm) (32)
a=1

The construction of a dynamic cable configuration is shown in Figure 3; a) shows the static catenary in
a steady tow state, and b}, ¢}, and d) superimpose the first two, four, and eight harmonics, respectively.

Often apparently complex cable shapes are described adequately with a small number of sinusoids.

The nondimensional dynamic tension on the cable is expressed as (from (23)):

L Fyus
&%~ [ enar+F (33

r

EAd
7T,L

Hd=

where
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a) No b) 2 c)4 d)8
Harmonics Harmonics Harmonics Harmonics

Figure 3: Hamonic Cable Configuration Dynamics
1
Fa =§prf|Vt|th (34)

In this case, it is assumed that cos (¢,) is small enough that tangential drag effects due 1o the flow field
in the tixed frame can be neglected, when compared to those generated by the cable motion alone. Then

vy is the velocity of the cable itself, which can be averaged along the cable as

_ Py— Py

)
i

or

%d‘ﬂn (G2 + &) ' (35)

Some algebraic maniputation gives a new form for (33):
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., _EAd,. . !
Hy = 57 (c_z—c,l—JD o, T dx) + 36)
pCdwiLx )
“-'"_'S_T'—Igﬂ"'&ﬁl(‘;?:z"'gtl)
r

We will find more utility in a simpler form for the dimensioniess dynamic tension, namely,
H;=Hf+0H,= 3N

where the definitions are made:

EAd . 1 _
Hda:ﬁ(éz_hgl_J‘ﬂ (IOT]ED.‘) (38)
pCd 0L
H, = —3T (39
E = 8 +8lGa+8a) (40)
Insertion of the solution from (32) into the expression for H ? yields
EAd 1
HP = _TI@Z—-QI—JO o, ({1 — 1) + My + 1)
ny
Y @, sin(nnx)do)
=1
This is
EAd . -
Hi =5 &G-&-m G- -nh- Zl Q13" @2)
"n =
where the integrals f are defined as follows:
1
I = j o, x dx
0
1
I = J'O o, dx @3)
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It = J a, sin{nmx) dx

We let the static tension be comprised of a primary part and a spatially-varying part: H,

This leaves the wave equation {31) in the following form:

1

- L
Ne = (1+8H5+Hd”+6Hd1;)T|n+;t-2—deu -=DZ

] o
L

1
=

and insertion of the assumed solution {32} in its expanded form gives

ny
Mgl =X + Mot + Z 0 peesin(nmx) =

R

1+8H +HP+0H xS 2
Z Q,(n Ty (=sin(nmo) +

2
n n=1

L 1
m(HdD'FaHdIN)ﬂ.O—EDZ

= 1+8H5.

{44)

{45)

The equations are subsequently Galerkin-projected along the components of the Fourier expansions;

i.e., each term is muitiplied by sin(mzx}, tor m an integer, and integrated over the length. Making use of

the identities

1 {1\
j xsinflnax)dy = cb
0 L %

i I n
j sinlanxydx = l—(—i
0 ni

and of orthogonality, lengthy algebraic manipulation eventually gives

2
Qe + M2y = —— (= My + Myrel= D™ =

ns i
2 z Q, nzj OH  sin(n T x) sin(m 1t x) dx —
a=1 0

n 1
2 Z ansz"'[ sin(n 7t x) sin{m 7T x) dx —
n=1 0

“6)

@7
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ny o l
2 z an“SHdNJ. sin(n e x) sinimue x) xde +
n=1 4]

2LHE -1
J o, sin{m 7t x) dx +

ntd Jo

2L5HdNJ~]

— | xa sin(mmx)dx-
nd ?

0

1
DJ Z sinim nx) dx
]

For simplification, we define

1
1= -2 nlj OH _ sin(nnx) sin(mmx) dx
0
1
im = —2n? BHd_f x sin{nmx) sin{mrx) dx “
0
2L ¢l
im = _.I a, sin(m xx) dx
¢ T mdle °
2L8H, p1 )
™ = — Io x o, sin(m % x) dx

providing the equations in the form:

nr

5 2
Qm*’m‘Qm = H(_n}ﬂ"'nz“(_ 1)”‘)"' 21 ind.m_

ns
QmHL+E Y QIS+ I HL + 21T - (49)

A=1

1
DJ Zsin(m R x) dx
0

Also we note that

P ] I-nprm,
J xsm(nr:x)sm(mnx)dx:—2nm———ﬁifn:tm 50)
0 (né — m%)
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jolxsin(nn:x)sin(mnx)dx = é fn=m

The final cable equations are contained in (49); each component presents a nonlinear ordinary
differential equation, coupled to the rest. It should be noted that for a cable with two-dimensional
configuration, to first order there is no coupling between in-plane {tangential and normal) and out-of-plane
motions (binormal), except for fluid forces. If all three motions must be considered, the out of plane
rnation can be described, within the same approximation, by the same equation as the transverse in-
plane motion, except that the static curvature effects must be ommitted. This will approximate the
solution in three dimensions. When both in-plane and out-of-plane motions are being modelled, care
must be taken to see that the drag forces reflect the vector nature of the overall drag effect (hence
providing coupling of the in-plane and out-of-plane motions). One should also note that for a cable in air
there are nonlinear geometric terms coupling the in-plane and out-of-plane motions, which must be

included for accurate solution of the equations. Such coupling terms in water, however, are overwhelmed

by the drag nonlinearity and can be ommitted, except for very low frequencies.

The vehicle dynamics must be next addressed to establish the response of the lower endpoint.
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B8 Vehicle Dynamics
This section addresses the full three-dimensional dynamic vehicle response. The Marison formulation

is used to account for drag and inertial forces.

Newton’'s Law in translation and rotation gives:

av

m-r = Foided mass + Fbm + Fo + Fopnsion * deg (51)
dw M

7 = Moddedmass * Mbuay * Mw! + Mlema}ou + M.img (52)

It is simplest to express the components of the velocity vector v and the rotation vector @ in the vehicle
reference frame - for this reason, the Euler Angle rotations are again convenient. We define a matrix C,
which maps vector coordinates expressed in an inertiat frame into the vehicle frame, through three Euler
Angles. Further, C, is a matrix which transforms coordinates from the inertial frame to the cable

reference frame, at the lower end of the cable.

The temporal change of the velocity and rotational velocity, as viewed from the vehicle frame, can be

found after expressing the total derivatives through the rotation vector. We find that:

ov

3 (ml+l\m)‘1 (Fbwy+Fm+ Frension + Farag — M WX V) (53)
9 -t (m M M M A Y g 54
R ( buoyancy + Mweight ¥ Wiension ¥ Mdrag ~ Fam X mar - (I, 0 x w) (4

Here, | is the identity matrix, A_ is the added mass matrix, and r__ is the vector which locates the

added mass center (defined in analogy to the mass center) on the body.

The various forces are specified in the vehicle frame with the use of the transformation matrices C_ and

C,
Fouponey = BC, 2 55)
Fwﬂ‘g}u =-W cvz (56)
Frcmion = ch cc—l t 7

1
Farag = ~5PwCaV (v.4) %)
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where z is the unit vector in the inertial vertical direction, and A is the vehicle area vector, i.e. a vector
whose coordinates are equal to the projected vehicle area in the corresponding direction. The

corresponding moments are the cross products of these forces with their respective location vectors.

The absolute velocity is simply the inverse-transformed body-referenced velocity vector:

%_’: =Clv (59)

The time rate of change of the Euler Angles is a little more difficult to obtain. First, the rotation vector in
the absolute frame is equal to the vectorial sum of the Euler Angle ratss, each going through only some
part of the whole transformation. Given the order of the rotations, it is possible through substitution to
extract the individual Euler Angle rates, as a function of the current angles and the rotation vector; see

Appendix 2. This transtormation matrix we call §, and we get:

a—e# =S (60)

ot
where 8 is the vector of Euler Angles. It now remains only to transform the motions of the vehicle’s
cable connection point back into cable coordinates so that the cable problem can be propagated. The
total motions can be considered as the summed effects of rotations of the vehicle and translation of its

center, and we use the transformation matrices C_ and C, as before to move between reference systems.

The following results are in the cable frame at the bottom of the cable:

x,=C(Clr, + % 61)
o
-a}— - CC Cv_l (V + 0OX rC) (62)
dzxc: oV do
- _1 —— —
2 =C.C, (8r+ dr”.:*“’"(m""c)* 2wXV) (63)

Here, r_is the cable connection point location vector. These relations provide the lower-end quantities
required for (48). For the top end of the cable, excitation motions need to be transformed into cable

coordinates, similarly to what was done for the vehicle end.
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9 Implementation Notes

9.1 Statics

Before any of the dynamics can be addressed, it is necessary to determine the steady-state
configuration of the system, in the presence of a flow field due to the forward velocity and/or the current
profite. Equations (51) and (52), after ommiting dynamic terms, are the basis for finding the vehicle’s
orientation. The vehicle inclination and the cable angle at the point of attachment are the unknowns, and
it is a simple matter of recursively solving the equations (51) and {52} for these twounknowns. Following
this, the cable angle and tension are integrated up to the surface using (8) and (8). Quantities which

need to be saved during the space integration include the local tension, flow field, and curvature.

9.2 Solving the Dynamics

The resulting equations of Section 7 are actually soivable by any ordinary ditferentiai equation
integrator. The two-dimensional problem was originally solved using Newmark's Method with a comrector
loop, which is well suited to second-order nonlinear systems. However. i vehicle motions are to be
followed in three dimensions, the differential equations in velocity are separable from those in position,
and we have chosen the standard Runge-Kutta algorithm for propagation of all the first-order equations.
Although the dynamics in surge for a long cable are known to be very slow, the expression for the
dynamic tension itself may turn out to be very stifi: as a result, the integration time step must typically be

much smaller than the horizontal response alone would dictate.

Qbviously, for increasing resolution along the cable, and for increasing numbers of harmanics, the
accuracy of the analytical moael improves. In general, however, good results have been obtained with
about thirty cable sections, and not many more than ten sinuscids. Cerain’ responses, such as the step
response, may require higher resolution in both respects, due to the importance of properly simulating the
inherent delay in propagation of transverse disturbances along the cable. In addition, a longer length
and/or lighter vehicle require a larger number of sinusoidal components. it should be noted that an effect
akin to aliasing can occur if the number of spectral components is too great compared to the number of

cable segments; this will lead to incorrect, if not outright unstable, system responses.
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10 Application to the ARGO/JASON Vehicles
The physical system is shown in figure 4: A surface ship positions, usually at slow speed, an
underwater vehicle through a long tether. The vehicle may be searching the ocean floor, or mapping the

topography of the bottem, or it may be the piatform for a smaller vehicle equipped with its own thrusters.

The tether has length at least slightly larger than the water depth. Since the average depth of the
ocean is about 4,000 m, with about 85% of the ocean being deeper than 2,500 m, tethers are usually very

long, having very stow dynamics with time constants in the range of 1 to 5 min.

A series of experiments reperied in Yoerger et al (1988), Triantafyliou et al (1988) and Grosenbaugh et
al (1989) established the basic properties of the vehicle and cable systems. The data were collected in
the Navy's AUTEC range in the Bahamas (1987), and in open sea experiments in the Tyrrhenian sea

(1988).

Figure 5 shows the response of the vehicle (dotted line) to a specific imposed ship motion (solid fine)
- s measured in the AUTEC range. The light dotted line shows the simulated vehicle response employing
the n.merical codes described here. The vehicle used here was a simple sphere with mass 2,200 kg and
weight in water 18 800 N, while the cable was 1,200 m long, with diameter 1.72 cm, Young's modulus 6.2
101 N/m? and specific density 4.4. Agreement between simulated and measured response is
consistently good, with the cable drag coefficient being the single most important parameter (in this run

the value of ¢, was taken to be 1.6).

Figure 6 shows the simulated response of the MANGUS vehicle to the same suriace excitation for
three different cable ienths, 740 m; 1200 m; and 2,500 m, demonstrating the substantial reduction in

vehicle bandwidth as the cable length increases.

Figure 7 shows the simulated response of the MANGUS vehicle to a 0.5 m/sec step velocity change of
the surface vehicle and for three cable lengths 500 m; 1,000 m; 2,500 m, demonstrating the associated

pure time delay estimated at 7 sec; 12 sec; 27 sec, respectively, for the three lengths considered.

Verification of the theoretical and numerical developments has concentrated on low frequency motions
for lack of higher frequency data. It is hoped that full scate experiments planned for the Fall 1989 will
provide the missing data. it should be noted that in fact the methodology outlined here is best-suited for

higher frequency motions.
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Figure 4: Towed Vehicle Configuration

We provide a case of higher frequency excitation as predicted by numerical simulation. it is for the
vehic_:le ARGO, which has weight in air 20,000 N and buoyancy 10,000 N, in 1,500 m of water with the

surface ship moving forward at 1 knot while undergoing heave oscillations of frequency 0.8 rad/sec and
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Figure 5: Vehicle Response

amplitude 1 m. As shown in figure 8, representing 40 sec of simulation time, the motion in a vertical plane
containing the ship direction is not sinusoidal: The upward motion is much faster than the downward
motion since in the latter case the vehicle is allowed to "fly" under lower tension. A basic feature of this
simuiation is the magnitude of response of the vehicle in the heave direction: it is almost completely
undamped. This should serve as a warning to system designers that, unlike transverse motions, motions
imposed along the axis of the cable (as is the heave motion in the case of this nearly vertical cabie) are

transmitted with very little damping all the way to the venhicle, however long the cable may be.

In fact, if the first axial natural frequency of the system is excited (i.e. the naturai frequency obtained if
we view the vehicle as a mass and the cable as a spring with mass), then the motions of the vehicle may
be amplitied, relative to the imposed motions of the ship. This in turn may cause momentary ioss of
tension in the line and subsequent snapping (high tension built-up) leading possibly to failure. Because of

the importance of this subject and the special remedies it may require (heave compensation) we have
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Figure 6: Vehicle Response

planned some expegriments in the near future (1989) to address these issues.

11 Conclusions

A methodology has been presented to simulate efficiently the dynamics of a towed underwater vehicle.
The equations as presented here are for two-dimensional motion, they are easily extendable, however, to
the three-dimensional case. We plan to report this extension, together with the necessary veritication in a

future report.

The basic advantage of the present scheme is the ease of implementation; and the speed of running

the code with good accuracy, as comparison with full scale experiments demonstrates.

It is hoped that the present methodology will lead to improved system designs, while further work is

underway to enhance the capability of the developments reported here.
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13 Appendix

13.1 Effective Tension

A cable section under high ambient pressure experiences an elongation due to the pressure, in
addition to the stretching induced by pulling on the ends. The basis of this extra elongation is seen in
Figure 9, where Archimedes’ view of the cable element is appended with a tensile pressure effect to result

in the actual physical state of the cable element. The cantributicn of this added pressure component is:

where p is the ambient pressure, and A is the cross-sectional area of the cable. In our work, the
effective tension (Goodman and Breslin 1976) is most applicable when the static cable configuration is

under study; large dynamic motions are required 1o significantly change the hydrostatic pressure.

0k

Figure 9: Effective Tension

13.2 Propagating the Euler Angles

This section describes how the matrix S can be found, given the order of rotation.

For this example, we let the rotations from the inertial frame occur in the following order:

1. Rotation about the (inertial-frame) z-axis (z) by 0
2. Rotation about the new y-axis (y,) by ¢
3. Rotation about the final new x-axis {(x,) by y

and the vehicle axes are <x,, ¥4, Z;>. See Figure 10.
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Figure 10: Euler Angle Tranformation

For each of the rotations, a simple transformation matrix can be found, and carrying them out
successively leads to: C, = C,, C, C,. Each of the Euler rotations gives a distinct component of the

rotation vector, and they are related to the intermediate unit vectors as follows:

= —X
©, 3 2
g
Wy = cwayl
do

In fact, vectorially, w = W, + w, + &y, and this is sufficient knowledege 1o break up the rotation vector
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into its three components in the vehicle frame <O, Dy, 0, > Next, substitution is used to isolate the
Euler Angle time rates of change, in tferms of the angles themselves and these rotation vector

compenents. Working through it, we obtain a result for 8:

0 sin (y) cos (y)
cos (9) cos (9)
S = 0 cos (v) -sin(y)
sin {0) sin {y) sin {¢) cos {y)

c0s (0) <os (9)
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